A Bacterial Laccase for Enhancing Saccharification and Ethanol Fermentation of Steam-Pretreated Biomass

نویسندگان

  • Antonio D. Moreno
  • David Ibarra
  • Antoine Mialon
  • Mercedes Ballesteros
  • Ronnie G. Willaert
چکیده

Different biological approaches, highlighting the use of laccases, have been developed as environmentally friendly alternatives for improving the saccharification and fermentation stages of steam-pretreated lignocellulosic biomass. This work evaluates the use of a novel bacterial laccase (MetZyme) for enhancing the hydrolysability and fermentability of steam-exploded wheat straw. When the water insoluble solids (WIS) fraction was treated with laccase or alkali alone, a modest increase of about 5% in the sugar recovery yield (glucose and xylose) was observed in both treatments. Interestingly, the combination of alkali extraction and laccase treatment boosted enzymatic hydrolysis, increasing the glucose and xylose concentration in the hydrolysate by 21% and 30%, respectively. With regards to the fermentation stage, the whole pretreated slurry was subjected to laccase treatment, lowering the phenol content by up to 21%. This reduction allowed us to improve the fermentation performance of the thermotolerant yeast Kluyveromyces marxianus CECT 10875 during a simultaneous saccharification and fermentation (SSF) process. Hence, a shorter adaptation period and an increase in the cell viability—measured in terms of colony forming units (CFU/mL)—could be observed in laccase-treated slurries. These differences were even more evident when a presaccharification step was performed prior to SSF. Novel biocatalysts such as the bacterial laccase presented in this work could play a key role in the implementation of a cost-effective technology in future biorefineries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lignocellulosic Fermentation of Wild Grass Employing Recombinant Hydrolytic Enzymes and Fermentative Microbes with Effective Bioethanol Recovery

Simultaneous saccharification and fermentation (SSF) studies of steam exploded and alkali pretreated different leafy biomass were accomplished by recombinant Clostridium thermocellum hydrolytic enzymes and fermentative microbes for bioethanol production. The recombinant C. thermocellum GH5 cellulase and GH43 hemicellulase genes expressed in Escherichia coli cells were grown in repetitive batch ...

متن کامل

Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation

BACKGROUND Lignocellulosic bioethanol is expected to play an important role in fossil fuel replacement in the short term. Process integration, improvements in water economy, and increased ethanol titers are key considerations for cost-effective large-scale production. The use of whole steam-pretreated slurries under high dry matter (DM) conditions and conversion of all fermentable sugars offer ...

متن کامل

Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass.

Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid...

متن کامل

Influence of fiber degradation and concentration of fermentable sugars on simultaneous saccharification and fermentation of high-solids spruce slurry to ethanol

BACKGROUND Saccharification and fermentation of pretreated lignocellulosic materials, such as spruce, should be performed at high solids contents in order to reduce the cost of the produced bioethanol. However, this has been shown to result in reduced ethanol yields or a complete lack of ethanol production. Previous studies have shown inconsistent results when prehydrolysis is performed at a hi...

متن کامل

Amores, Ballesteros, Manzanares, Sáez, Michelena and Ballesteros Ethanol Production from Sugarcane Bagasse Pretreated by Steam Explosion

Ethanol Production from Sugarcane Bagasse Pretreated by Steam Explosion 25 ABSTRACT Bioethanol is an alternative renewable fuel that can be produced from cellulosic biomass through hydrolysis and fermentation based processes. Sugarcane bagasse constitutes a potential lignocellulosic substrate for bioethanol production, since it has high sugar content and is a renewable, cheap and readily availa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016